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Abstract

Choice conjures the idea of a directed selection of a desirable action or object,
motivated by internal likes and dislikes, or other such preferences. However,
such internal processes are simply the domain of our human physiology. Un-
derstanding the physiological processes of decision making across a variety
of contexts is a central aim in decision science as it has a great potential
to further progress decision research. As a pilot study in this field, this
paper explores the nature of decision making by examining the associated
brain activity, Electroencephalogram (EEG), of people to understand how
the brain responds while undertaking choices designed to elicit the subjects’
preferences. To facilitate such a study, the Tobii-Studio eye tracker system
was utilized to capture the participants’ choice based preferences when they
were observing seventy two sets of objects. These choice sets were composed
of three images offering potential personal computer backgrounds. Choice
based preferences were identified by having the respondent click on their
preferred one. In addition, a brain computer interface (BCI) represented by
the commercial Emotiv EPOC wireless EEG headset with 14 channels was
utilized to capture the associated brain activity during the period of the ex-
periments. Principal Component Analysis (PCA) was utilized to preprocess
the EEG data before analyzing it with the Fast Fourier Transform (FFT) to
observe the changes in the main principal frequency bands, delta (0.5 - 4 Hz),
theta (4 - 7 Hz), alpha (8 - 12 Hz), beta (13 - 30 Hz), and gamma (30 - 40
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Hz). A mutual information (MI) measure was then used to study left-to-right
hemisphere differences as well as front-to-back difference. Eighteen partic-
ipants were recruited to perform the experiments with the average results
showing clear and significant change in the spectral activity in the frontal
(F3 and F4), parietal (P7 and P8) and occipital (O1 and O2) areas while
the participants were indicating their preferences. The results show that,
when considering the amount of information exchange between the left and
right hemispheres, theta bands exhibited minimal redundancy and maximum
relevance to the task at hand when extracted from symmetric frontal, pari-
etal, and occipital regions while alpha dominated in the frontal and parietal
regions and beta dominating mainly in the occipital and temporal regions.

Keywords: Decision making, Electroencephalogram (EEG), User
Preferences.

1. Introduction

Choice modeling is used to identify the drivers of choice, the relative
impact of each of those drivers, and to determine what specifically affects
choices (features, attributes, qualities etc) (Chandukala et al. (2008)). Un-
derstanding and predicting the behavior of decision makers when choosing
among discrete goods has been one of the most fruitful areas of applied re-
search over the last thirty years (Louviere et al. (2000)). Discrete choice
experiments are nowadays widely applied in many areas such as market-
ing, transport, applied economics, and environmental and health economics
(Louviere (1981); Fiebig et al. (2010); Street et al. (2008)). In discrete choice
experiments, participants are required to make repeated choices amongst
alternative product profiles in which the attribute levels have been systemat-
ically varied. For example, participants may make choices among alternative
milk products with the attributes of price and fat content varied over the
respective levels of $1 and $1.50, and skim and regular. Based on the choices
made across the experimentally varied alternatives, the importance weights
of the product attributes and the trade-offs made by decision makers among
these attributes can be statistically ascertained. Thus, choice models are
extremely powerful tools for predicting human choice in many contexts.

Decision research can be further progressed by understanding the hu-
man processes underlying decision outcomes that are not easily articulated
or controlled (Glimcher et al. (2009); Politser (2008)). A number of non-



articulated factors, including psychological state and emotions, are likely
playing substantial roles in some decision making contexts (Aurup (2011)).
The literature on emotion recognition reveals that emotions can be extracted
from physiological signals like heart rate, skin conductance, and brain signals
i.e., the Electroencephalogram (EEG) along the well-known EEG frequency
bands such as delta (0.5 — 4 Hz), theta (4 — 7 Hz), alpha (8 — 12 Hz), beta
(13 — 30 Hz), and gamma (30 — 40 Hz) (Partala et al. (2000); Takahashi
(2004); Bos (2006)). In addition, the literature on psychology reveals that
human emotions are related to their preferences (Aurup (2011); Nie et al.
(2011)). Since the language of preferences seems intuitive, it is the one typi-
cally used in the theory of choice. Several studies attempt to integrate ideas
from the fields of psychology, neuroscience, and economics in an effort to
specify accurate models of choice. Astoli et al. (2008) demonstrated that the
cortical brain activity elicited in the frontal and parietal areas when viewing
TV commercials that were remembered by subjects were markedly different
from the brain activity in the same areas elicited during the observation of
TV commercials that had been viewed but since forgotten. A similar find-
ing was also reported by Custdio (2010) when he noted that advertisements
that received better scores (on the survey instrument employed) had more
emotional processing neural circuits activated than the advertisements that
received worse scores; and that Alpha band activity was observed in the oc-
cipital regions and theta activity in the midline and frontal cortical regions
for the better scoring advertisement. The use of EEG technology is also pro-
moted in the work of Bourdaud et al. (2008) for the study of the correlates
of the brain electrical activity, particularly those related to the exploratory
behavior. It was shown that the bilateral frontal and parietal areas are the
most discriminant. The importance of the left frontal region is also indicated
in an experiment relating the smelling of favorite and dislikeable odors to
EEG power change suggesting an association between theta wave and alpha
wave from the frontal regions and preferences (Yokomatsu et al. (2007)). The
importance of theta and alpha bands was also very recently recognized during
a preference judgment task when choosing among only two colors simulta-
neously presented to the right and left hemifields (Kawasaki and Yamaguchi
(2012)).

In general, only a limited number of studies gathering both neural (cog-
nitive and emotion) data and preference data have been conducted as this
is a newly emerging area. As seen, many of the available studies focus on
the brain activities elicited during the observation of TV commercials (Astoli
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et al. (2008); Custdio (2010)) and not on the actual preferences. However, it
is obvious that the choices people make everyday are affected by unconscious
processes in the brain indicating the importance of this field of research. To
begin linking these two streams together, the changes in the power spectrum
of well-known EEG frequency bands i.e., §, 0, a, 5, and 7 needs to be ex-
amined with regard to the changes in preferences during decision making.
Thus, as a first step toward understanding the role of EEG as a measure
of emotional and cognitive response in decision making, we present in this
paper a preliminary study on the dynamics of EEG during the elicitation of
a persons’ preferences.

The structure of this paper is as follows: Section 2 describes the data col-
lection procedure including a description of both the eye-tracker and Emotiv
EPOC EEG headset based experiments. Section 3 describes the prepro-
cessing and feature extraction steps, and the use of mutual information to
identify associations between preferences and EEG. Section 4 presents the
experimental results; and finally, conclusions are provided in Section 5.

2. Data Collection

The data collection process employed two sets of equipment; the first was
an eye-tracker system and the second included a brain signals monitoring
system as described below.

2.1. FEztracting and Analyzing Fye-tracking Data

The experiments were conducted using the Tobii X60 eye tracker (www.tobii.com);
a stand-alone eye tracking unit designed for eye tracking studies of real-world
flat surfaces or scenes such as physical objects, projections and video screens.
This eye tracker has an accuracy of 0.5 degrees which averages to 15 pixels
of error with a drift factor of less than 0.3 degrees and has a sampling rate
of 60 Hz. Tobii Studio 1.3 was employed as it offers an easy-to-use solution
to extract and analyze eye tracking data. The package facilitates efficient
multi-person and multi-trial studies. The software combines the collection
and analysis of eye gaze data with numerous other data sources, includ-
ing keystrokes, external devices, video recordings and web browser activities.
The X60 monitor mount accessory provided fixed geometry for the eye tracker
and screen, allowing the setup to be adjusted for each subject without im-
pacting data quality. Thus, the eye tracking system was calibrated on each



subject to provide the best results. The complete system is shown in Fig.1
with a participant wearing the Emotiv EEG headset.

A sequence of choice sets were developed. These were made of a combi-
nation of three objects that varied in both color and pattern. The objects
were possible screen backgrounds that the user could set for their personal
computer. Three colors (blue, green and yellow) and three patterns (bam-
boo, messy and none) were used to create the objects as shown in Fig.2. The
colors and patterns were varied using a full factorial design producing nine
unique objects. A full factorial design was then used to vary the combina-
tions of objects producing the choice sets. This design yielded 72 possible
choice sets of three objects when order effect was compensated for. Each of
the 72 choice sets was shown on the screen one at a time. The sets consisted
of a black screen with the 3 objects (or background options) aligned on the
left, middle, and right positions as per the example shown in Fig.3. The
specific task asked the participant to click the image he/she felt that they
liked the most for their personal computers’ background. Throughout the
task, Tobii eye tracker system monitored their eye gaze.

In addition to recording eye gaze data, the Tobii eye tracker also made
an audio/video recording of the study session. The eye gaze data included
timestamps, gaze positions, eye positions, pupil size, and validity codes. In
this study, we use gaze positions to determine where the participants were
looking, conditional upon the physical dimensions of each of the choice ob-

TOBII EYE-TRACKER

EXAMPLE CHOICE SET
DISPLAYED ON SCREEN

Figure 1: The experimental setup utilized in this paper



jects. Additionally, the available timestamps were utilized to align the eye
tracker data with the EEG data.
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Figure 2: Tlustration of the developed choice set objects/images which vary color and
pattern

Figure 3: An example of choice one set with three images composed of different color and
pattern combinations.

2.2. Emotiv EPOC-based EEG Data Collection

The EPOC is a low cost Human-Computer Interface (HCI) comprised of
14 channels of EEG data and a gyroscope measure for 2 dimensional control
(www.emotiv.com). The electrodes are located at the positions AF3, F7, F3,



FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 according to the Interna-
tional 10 — 20 system as shown in Fig.4 (Campbell et al. (2010)) and Fig.5.
Two electrodes located just above the participants ears (CMS/DRL) are used
as references (one for the left and the other for the right hemisphere of the
head). The EPOC internally samples at a frequency of 2048 Hz which then
gets down-sampled to 128 Hz sampling frequency per channel, with the data
then sent to a computer via Bluetooth. It utilizes a proprietary USB dongle
to communicate using the 2.4GHz band. Prior to use, all felt pads on top of
the sensors have to be moistened with a saline solution. The Emotiv Software
Development Kit (SDK) provides a packet count functionality to ensure no
data is lost, a writable marker trace to ease single trial segmentation tasks,
and real-time sensor contact display to ensure quality of measurements (Bo-
brov et al. (2011); Anderson et al. (2011)). The effectiveness of the EPOC
headset as a real-time brain EEG scanner was demonstrated in a number
of recent publications!, including a demonstration at the well-known neural
information processing conference 2.

Both of the EPOC and eye tracker were made to start at the same time
by means of synchronization software written in Visual Basic to start both
of these modules together. After the data collection step, all of the collected
data was transferred to Matlab for further processing as will be described in
the next sections.

2.3. Subjects

Eighteen participants, including both males and females, were recruited
for this study. All participants were aged between 25 and 65 years. Partic-
ipants were a combination of right-and-left-handed with only two subjects
employing medical glasses. The experimental procedure was approved by
the human research ethics committee in the University. The eye tracker was
re-calibrated on each subject to provide accurate measurements for the par-
ticipant’s gaze during the experiments. The whole experiment lasted for less
than 5 mins for each participant as they only had to click their preferred
image from each choice set of three objects for the full sequence of 72 sets.

YA list of recent publications on Emotivn EPOC is available at
http://www.emotiv.com/researchers/
Zhttp://milab.imm.dtu.dk /nips2011demo



Figure 5: Emotiv EPOCs headset on a subject

3. DATA ANALYSIS

The data analysis procedure for measuring the correlations between dif-
ferent brain activities at different channel locations with the choice task is
shown in Fig.6. The processing starts with a baseline removal section due to
the included DC offset in the EPOC EEG readings since the data is trans-
mitted as an unsigned integer. The analytical procedures are detailed below.

3.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classical technique in statistical
analysis the purpose of which is to, given a set of multivariate measurements,
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Figure 6: Flowchart of data processing procedures of the proposed system

find a smaller set of variables with less redundancy that would give as good a
representation as the original variable list (Hyvarinen et al. (2001)). PCA is
related to independent component analysis (ICA). In PCA the redundancy is
measured by correlations between data elements, while in ICA the concept of
independence is used; further, in ICA the reduction of the number of variables
is given less emphasis. In this case PCA was used due to compatibility with
the literature in the decision making field. Given M observations of an N
length random vector ¥, the PCA transform starts first by subtracting the
mean from the vector (Hyvarinen et al. (2001); Jackson (1991))

X+ V— EV]| (1)
The N x N covariance matrix C), is computed
C, = B[xx] (2)

The principal components z of X are given in terms of the unit-length
eigenvectors (€;...€y), of C,



z=WX (3)

Where the projection matrix W contains the eigenvectors (€;...€y) (Har-
grove et al. (2009)). In the proposed system, only the eigenvectors corre-
sponding to > 98% of the total variance are kept while all other eigenvectors
removed. In such a case, the common noise components are removed and
only the important signal parts are kept along all of the channels.

3.2. Power Spectral Analysis

Analysis of changes in spectral power and phase can characterize the
perturbations in the oscillatory dynamics of ongoing EEG (Lin et al. (2006)).
After cleaning the EEG data from the noise components by the PCA step
and retrieving the clean EEG signals, the collected EEG records were band-
pass filtered between 0.5 Hz-to-40Hz to eliminate artifacts related to higher
frequencies. The Fast Fourier Transform (FFT) was used to calculate the
spectral power in the well-known EEG rhythms of §, 0, o, 8, and . It
should be noted here that each participant spent different amount of time
looking at each of the 72 sets of objects with the participants showing a
decreasing linear trend in terms of the time spend on looking at each of the
72 choice sets as the participants became familiar with the choice objects
toward the end of the experiment. The time spent by each participant was
calculated from the data provided by the eye-tracker and the the total time
across all participants was acquired by averaging the individuals time as
shown in Fig.7.

Only the records of EEG data that corresponded to the periods of deci-
sion making for each of the 72 choice sets were analyzed. Information from
the eye-tracker enabled us to remove the EEG time sections relating to the
periods when the users were just clicking to indicate their preferences as both
the eye-tracker and the Emotive EEG headset were synchronized to start to-
gether. The windowed EEG portions were always longer than 0.5 sec as the
participants went through cognitive processing of the visual information to
decide on their preferences. For each participant, the shortest EEG record
length was observed and all other records were divided into equal portions
of this length and then FFT was applied and the results were averaged for
long records, i.e., functioning as the short-time Fourier transform. This in
turn allowed accurate estimation of the power spectrum.

The EEG trace within a certain epoch is expressed as a function of fre-
quency X[k]. Denoting P|[k] as the phase-excluded power spectrum (the
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Figure 7: Average time spent by the participants to elicit their preferences on each of the
utilized 72 choice sets.

result of a multiplication of X[k] by its conjugate X*[k]), and denoting W as
the bandwidth of the spectrum, we define our features in terms of the power
spectral moments. Spectral moments appear to be one of the promising
approaches for EEG characterization and has been utilized in several EEG
studies (Hjorth (1970); Saltzberga et al. (1985)). The m’th order spectral
moment is given as

My, =Y k" Plk] (4)

According to Flusser et al. (2009), a robust implementation of spectral
moments is achieved through proper normalization by low-order moments
as they are more stable to noise and easier to calculate than higher order
moments. On the other hand, higher order moments, like the second moment,
was pointed out by Hjorth (1970) to be an important measure to describe
the EEG activity. Thus, we employ in this paper the ratio of the second
moment to the zero moment of each of the EEG frames and use these as the
extracted features for each of the EEG bands of 4, 6, «, 8, and v and the
total spectrum. These features are given as shown below.

D@lta — Zi:()ﬁ kQP[k]

>Lus Pl ®)
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After extracting the aforementioned features a logarithmic transformation
was applied since the power of the EEG rhythms tend to change more linearly
in the logarithmic scale than in the normal scale (Lin et al. (2006)).

3.3. Preference Estimation

Given the huge amount of information provided by the Tobii studio 1.3
software, one can analyze a large set of parameters describing the underlying
choice experiment. In this paper, we analyzed the decision made regarding
each of the colors and patterns individually and the combined color/pattern
interaction. Thus the specific choice objects are not the focus of this analysis,
as they are interesting only in that they provide us access to the underlying
features of participants’ preferences. Generally, all participants showed a
tendency to prefer either a certain color or pattern more than the possible
combinations of colors and patterns. Thus, the decisions were based upon
the colors and patterns that the participants selected. An example of one
participant’s preferences are shown in Table.1, where this data is obtained by
counting the repeated choices for each subject. It can be seen that in total
there were 72 choices observed in the frequencies (23+19+12+124+6 =72)
reflecting the 72 choice sets in the experiment design, with a clear tendency
for this subject to select anything associated with a blue color. This can
be seen in that the blue color choice frequency is 23+19+12 =54 out of
72 sets. Green is chosen only 18 times, and yellow was not chosen at all.
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This participant also demonstrates the low preferences for a specific pattern
with bamboo selected 23 times, messy 31 times, and none 18 times. After
capturing the preferences of the participants, the next task was to investigate
the different brain activities and channel locations to infer the areas of the
brain that showed a significant change in terms of the EEG power spectrum
while the subjects were indicating their preferences. A class label for each
participant’s preferences was constructed for each of the colors and patterns
as follows: for a blue class label, the class variable is filled with 1’s upon
selecting either object 2, or 5, or 8 (See Figure 2) while populating the class
label with 0’s upon selecting all other objects. The yellow class label is
populated with 1’s upon selecting either object 3, or 6, or 9 while populating
the class label with 0’s upon selecting all other objects.

Thus, the analysis now simplifies to computing the mutual information
between the estimated EEG power spectrum from all of the channels with
the estimated class label which in turn represents the problem as a binary
classification problem. In such a case, one can monitor the changes in EEG
more accurately with each of the selected colors and patterns individually
and accurately identify the areas of the brain being activated.

Table 1: An example of the estimated choice frequencies from Tobii eye tracker software
for one subject.

Object | Choice Frequencies | Color | Pattern
1 0 yellow | bamboo
2 23 blue | bamboo
3 0 green | bamboo
4 0 yellow | messy
b) 19 blue messy
6 12 green messy
7 0 yellow none
8 12 blue none
9 6 green none

3.4. Mutual Information-based Relevance Estimation

In information theory, the concept of mutual information (MI) is defined
as the reduction of uncertainty about a random variable through the knowl-
edge of another random variable (Klir (2006); Cover and Thomas (2006)).
The MI between two random variables X and Y, denoted as I(X;Y"), mea-
sures the amount of information in X that can be predicted when Y is known
and is given as
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I(X;Y) = Zzp(w,y)logw (11)

222 p(@)p(y)

where p(z,y) is the joint probability distribution function of X and Y,
and p(z) and p(y) are the marginal probability distribution functions of X
and Y respectively. Shannon entropy, which is a measure of uncertainty of
random variables, is usually used to represent mutual information according
to the following formula

I(X;Y)

T

H(X) - H(X]Y
H(Y) - HY|X
H(X)+ H(Y) - H(X,Y)

~—

(12)

~—

where H(X) and H(Y') are the entropy of X and Y respectively, H(X,Y)
their joint entropy, and H(X|Y") and H(Y|X) the conditional entropies of X
given Y and of Y given X, respectively. In a learning task, X and Y can be
any two features, i.e., f; and fo, and I(f1; f2) is used to reflect the amount of
information redundancy between the two features. When two features highly
depend on each other, the respective class-discriminative power would not
change much if one of them was removed. Alternatively, either f; or fs could
be replaced by the class label C' and I(C; f1) or I(C f2) is used as a measure
of relevance, i.e., how relevant f; or fy is to the problem at hand that is
characterized by the decisions in the class label. In this paper, the concept of
normalized mutual information, given as IIEIC—}{I), between the extracted EEG
power spectrum features in the well-known rhythms and the constructed
class labels is utilized when studying the left-to-right hemisphere activities.
In such a case, one can identify the most active portions or areas on the
brain and then to identify the EEG bands that have the highest normalized
mutual information with the choice frequencies. In addition, when studying
the difference between the activities of the frontal vs occipital regions (which
are particularly relevant for this type of choice task), a subset of EEG features
was created combining the features from each two symmetric channels and
computing their mutual information as a proposed symmetric measure of
importance; this is given as
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[(f1§f2)
(f1) + H(f2)

where a; and as are factors controlling the importance of the two terms
and were chosen empirically as 1.25 and 0.75 respectively; I(C;{f1, fo}) is
the mutual information between the two features fi, fo and the class label C
and I(f1; f2) is the mutual information between the two features. Finally, the
self-contained, cross-platform, package for computing the mutual information
provided by Peng et al. (2005) was utilized as it has proved very suitable for
feature selection problems?®.

SMI = a; X [(C, {fl,fg}) — Q9 X H (13)

4. EXPERIMENT RESULTS

Given the extracted features from each participant’s EEG data, the anal-
ysis attempted to identify which of the ¢, 6, a, 8, and v components of the
EEG exhibited the highest mutual information with the class label that re-
flected the individual participant’s preferences. In order to accomplish this
task, each of the ¢, 6, a, 8, and = features were extracted from each of the
channels and then the normalized mutual information, i.e., II({C;f 1), was cal-
culated for each of the features across each of the participants. It should
be noted here that the mutual information values across each of the bands
were further normalized so that the channel that achieved the highest mu-
tual information across a specific band will have a value of '1’, while all
other channels will have a value of mutual information that is less than '1’.
This was done in order to find the most promising channels along each of
the aforementioned EEG bands regardless of the exact value for the mutual
information. The average mutual information, across all participants and
between each of the EEG bands’ power and the corresponding class label
(representing the elicited preferences), was then plotted as shown in Fig.8.

These results indicate several important points; the first is that, across
each of the EEG bands, there is a clear difference between the mutual in-
formation value achieved by symmetric channels on the left and the right
hemispheres. This difference indicates asymmetric activities in terms of the
EEG bands power while the participants were making their decisions regard-
ing their preferred colors, patterns, and the combination of both. From these

3available at http://penglab.janelia.org/proj/mRMR/
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across all subjects.
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results, it can be seen that the frontal, parietal and occipital regions were
the most active indicating a significant change in the underlying EEG spec-
tral activity during the decision making process. As an example, ¢ band
exhibited its highest mutual information with the class label when extracted
from F3, O2, F4, and T8. Delta oscillations are present in the EEG activ-
ity not just in sleep, but in awake state and are thought to be generated
by neocortical and thalamocortical networks. Knyazev (2007) noted in his
review of the functional roles of different EEG oscillations that a number of
observations support the idea that the delta rhythm is a signature of reward
processing and salience detection, a finding which was further confirmed by
Wacker et al. (2009). It has also been recently shown that task performance
correlates with prestimulus 0 oscillatory phase and that reaction times corre-
late with the phase of the § band oscillation at target onset (Stefanics et al.
(2010)). These findings support the importance of the ¢ band during the elic-
itation of preferences, and this is very clear of the frontal regions, especially
on F3. An analysis of variance (ANOVA) test was performed to identify if
there were any significant differences between actual § band feature values
from different EEG channels (significant level is reported at p < 0.05). The
results indicated significant differences between ¢ band features from each of
the channels in the set made of F3, O2, F4, and T8 channels and the rest of
the channels from the same set with p < 0.001.

Theta 6 band exhibited very high mutual information with the elicited
preference especially in the frontal regions (F4, FC6, AF3, F7, and F3) and
in the parietal regions (P8). Theta waves have long been associated with
emotional processes, and it is believed to be correlated with emotions and
limbic regions with some studies indicating higher 6 activity when a prefer-
ence is being made on advertisements (especially F3 and F4) (Custdio (2010);
Yokomatsu et al. (2007); Ohmea et al. (2010)). However, there is no clear
agreement on which channel, F3 or F4, and which bands from these chan-
nels, should be more related to the decision making process. Various studies
report that either F3 or F4 could be interchangeably more active across dif-
ferent participants (Aurup (2011)). ANOVA test results also indicate clear
significant differences between 6 band features at F3 and F4 with p < 0.001.
a band also agreed with # on the importance of F3, FC5, and F4 with some «
activity on the occipital and parietal regions as well. Both # and « were very
recently studied to observe the subjective preference of colors on the visual
attention-related brain activities with results revealing that € synchroniza-
tions and a desynchronizations were modulated by subjective preferences
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(Kawasaki and Yamaguchi (2012)).

In terms of [, the highest mutual information values were exhibited in
the temporal and occipital regions with more important g spectral changes
at the left frontal regions than that on the right frontal regions. However,
no evidence exists in the literature regarding the significance of 5 in choice
modeling due to the limited number of EEG channels and EEG bands uti-
lized in previous studies (Aurup (2011)). Additionally, it is not clear from
the current analysis if the occipital regions were activated by the visualiza-
tion of different colors or if they are actually related to the users preference
changing, as the results here are averaged across all subjects regardless of
their preferences. It is generally known that colors stimulate the occipital
regions and this might be a reason for the high scores on  bands on the
occipital regions. Thus, a more appropriate approach to understanding the
importance of these bands would be to observe their effects on two individual
groups of subjects according to their preferences. Gamma band also showed
its highest spectral changes on both F4 and P8 supporting the importance
of the frontal and parietal regions with v also shown in the literature to cor-
relate well with preferences (Aurup (2011)). Finally, the spectral moment of
the whole spectrum also suggests the importance of the frontal and parietal
regions.

In the next part of the experiments the sample was split to separate those
participants with a strong preference for a color (and not a pattern), forming
10 subjects, from those who prefer a pattern (and not a color), forming the
remaining 8 subjects. The mutual information values were averaged as shown
in Fig.9.

These results clearly indicate that J, 6, «, 3, and v bands tend to exhibit
different scores on mutual information values for the different brain regions
between the two participant groups. As an illustration, when the preference
is for a certain color the most important channels in terms of § are shown
to be F3 and F4, while F3, O2, and AF4 exhibit highest mutual information
when the preference is for a certain pattern (regardless of color). Both /3 and
~ clearly exhibit the effect of the different preferences between the groups on
the mutual information scores. Across the subjects with color preferences,
[ exhibited its highest mutual information value at FC6 and AF3 while the
same band exhibited its highest mutual information with the decision making
process on temporal, frontal, and parietal regions when the preference was a
pattern. v also showed its highest score on P7 with colors preferences and on
F4 with patterns preferences. An important finding from these results is that
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Figure 9: A plot of the normalized mutual information between each of the four main
EEG-bands power with the class label along each of the different EEG channels, averaged
across all subjects.
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both # and « showed the least amount of discrepancy among their achieved
mutual information values with both color and pattern preferences. In or-
der to validate this finding, the absolute value of the cumulative differences
among the mutual information values with color and pattern preference for
each band and across each channel was computed and plotted as shown in
Fig.10. The results indicate that both # and a bands are more related to the
process of decision making than to what was actually selected as a preference.
The same finding also applies for the mutual information results across the
total spectral moment, as shown through the low discrepancy between the
bars.

25

Absolute Cumulative Difference Scale

Delta Theta Alpha Beta Gamma Moment
EEG Bands

Figure 10: Absolute cumulative difference between the mutual information values achieved
along each band and across each channel with colors and patterns preferences showing
alpha with least discrepancy.

In the next part of the analysis we focused on the front to back brain
activations in order to identify which areas of the brain highly correlate with
decision making regardless of the left and right hemisphere activities. In
order to observe the active regions in the brain a 2-dimensional component
map was generated using the well-known EEGLAB toolbox (using ICA to
preprocess the data and then plotting the 2D component map), with an
example given in Fig.11 for one participant.

There is high activity on both F3 (component 13) and F4 (component 8)
which in turn confirms the importance of the EEG data collected from these
two channels. However, in order to validate the importance of the features
extracted from these channels we employed the proposed SMI measure from
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Eq.13 while considering each of the ¢, 6, «, 3, v bands, and the total spectrum
separately.

To illustrate the results from these analysis, Fig.12 shows the importance
of each pair of symmetric channels (for example F3 and F4 or AF3 and AF4
and so on), computing the mutual information between each two features
extracted from the EEG bands; Say, for example, the mutual information
between « feature from F3 and « feature from F4, i.e., I(fi; f2), and the
two features together with the class label, i.e., I(C;{fi1, fo}). In such a case
and in terms of information exchange between symmetric channels, § band
seems to exhibit its maximum relevance to the problem when extracted from
temporal (T7-T8) and frontal (F3-F4 and AF3-AF4) regions. The relevance
of 6 was also very clear on occipital (O1-O2), parietal (P7-P8), and frontal
regions (F3-F4). Alpha again seemed to reflect consistent results with the
previous findings showing more relevance to the problem when extracted from
frontal (F3-F4) and parietal (P7-P8) regions, while 5 achieved its maximum
at the occipital (01-02) regions followed by temporal (T7-T8) and parietal
regions (P7-P8). In terms of ~, temporal (T7-T8), parietal (P7-P8), and

Figure 11: 2D Component map of the 14 channels EEG data from Emotiv EPOC, plotted
using the EEGLAB software.
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occipital (O1-02) regions are shown to be more active in terms of information
exchange between these symmetric channels. The same regions were again
the most active in terms of the moment of the total spectrum which also
shows clear activity on F3-F4. All of these results were again supported
by an ANOVA test showing significant differences (p < 0.001) between the
features extracted from symmetric channels.

0.7
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0.5 -

0.4

0.3 -

Mutual Information

0.2 -

AF3-AF4 F7-F8 F3-F4 FC5-FC6  T7-T8 P7-P8 01-02

Symmetric EEG Channels

m Delta ®mTheta ® Alpha ®mBeta ®mGamma M Moment

Figure 12: Mutual information between symmetric EEG channels along each of the §, 6,
a, B, v and total spectral moment bands and the class label.

The results have thus far demonstrated the dominance of the frontal,
parietal, and occipital regions. It was also shown that the different bands
of the EEG play a significant role in different regions in the brain. In the
third stage of the analysis, the extracted features, represented by the power
of the §, 6, «, B, and v bands, from all of the participants were grouped
into one large data matrix to perform a subject independent analysis of mu-
tual information. The resultant data matrix was then normalized to have
zero mean and unit standard deviation to remove the effect of different data
distributions from each subjects’ dataset. The purpose of this was to inves-
tigate the regions of the brain that best interact together along each of the
EEG bands to produce the highest mutual information with the class label.
Unlike the previous analysis, the class label was the original label of choice
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objects as shown in Table.1, i.e., a nine classes problem. This step ensures
the importance of the ranked features, as basis for mutual information, is
not tied to the existence of a specific class, such as the color blue, but will
in turn describe the general differences between the EEG features extracted
from different regions throughout choice behavior. The mutual information
between each of the extracted features from each channel and the rest of the
channels with the choice object based class label, i.e., I(C; fi, f2) was com-
puted along each of the 4, 6, o, #, and v bands. An ANOVA test was used
to confirm the statistical significant differences among the well interacted
features. The results showed that € power features best interact together
when extracted from F3 and O1 (p < 0.0001). Alpha power features, on the
other hand, best interact together when extracted from channels O1 and F4
(p < 0.0001), while § features best interact together when extracted from
AF3 and O2 (p < 0.0026), and finally v from AF3 and T7 (p < 0.0309).

5. Conclusion

In this paper, we employed a commercially available wireless EEG head-
set to investigate the brain activities taking place during decision making. A
set of choice objects were shown to participants with them asked to select
their preferred object by clicking on it. The frequencies of their choices were
recorded by eye tracker software from a Tobii X60 eye-tracker system. The
eye tracker system was used in this case solely to map the transition between
the choice sets and the actual choice of object. The actual eye tracking
component of the data was captured but will be analyzed at a later time.
When studying the EEG activities related to the choices made by partici-
pants several important points emerged. The first is that there is a clear
asymmetry between the activities taking a place in the right and left hemi-
spheres. Secondly, high mutual information values between preferences and
the different EEG bands were found in F3 and F4 (regardless of colors and
patterns preferences). In order to investigate the reported relevance of other
bands, further analysis were conducted to study the amount of information
exchanged between symmetric EEG channels. This showed a dominance of
the ¢ band in the temporal regions, ¢ in the frontal, parietal and occipital
regions, « in frontal and parietal regions, and  and v in the temporal, pari-
etal and occipital regions. Finally, more important than individual relevance
of the EEG bands along individual channels was the observation that the
variations of the choice objects played a significant role in electing different
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regions on the brain, that is what was selected (colors, patterns, or their
combinations) had a contributing role in defining the most active regions on
the brain during the decision making process. Our experiments continue as
we are currently developing more complicated choice tasks to offer greater
external validity and recruiting more participants for the greater generaliz-
ability. We are also examining ways to incorporate the data from the eye
tracking system regarding what the participant is looking at to provide fur-
ther insight into how the visual cues in the experiment may play a part in
neural responses when preferences are elicited through choice behavior.
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