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Abstract

The application of neuroscience methods to analyze and understdarepoe formation and decision making in marketing tasks
has recently gained research attention. The key contribution of this isap@omplement the advancement of traditional consumer
research through the investigation of the event-related potentials (ER&®)iated with preferences elicited during a discrete
choice experiment (DCE). Five subjects participated in the experinsathiey chose their preferred computer background image
from a set of images with fierent colors and patterns. Emotiv EPOC, a commercial wireless Eecephalogram (EEG) headset
with 14 channels, was utilized to collect EEG signals from the subjects whiléngnake hundred and fifty choice observations.
The collected EEG signals were filtered and cleaned from artifacts bedorg epoched into segments of 1000 msec each for ERP
analysis. When observing the average of EEG epochs, collected whgaltfexts chose their preferred background images, there
was a clear P300-ERP component with its largest power shown at tlieletil channel (F3 from the international 10-20 system).
A significant diference was revealed between the average ERP potential on F3 duraqptifes that coincided with the images
containing the preferred objects against that coinciding with the imagedithatt contain the objects of interest (wiph< 0.01).

A clear N400-ERP component on the parietal lobe sensor at P7 waeestsled to be significantly related to thdfeience in
absolute preference (with< 0.02). Our experimental results also showed that there was a negdditierrship between the speed

of the decision and the fierence in preference for the objects in the decision.
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1. INTRODUCTION

Consumer neuroscience is an emerging discipline utilizimghods and theories employed originally in brain
research for investigating marketing problems and consa@eision-making researéhOne of the notable findings
from the decision making literature is that preferencesarestructed in response to a decision task rather thardstore
in memory and called upon when neededumerous theories exist regarding how consumers fornetheserences,
however, literature largely agrees that preference cocistin involves several, potentially interacting, proseesS,
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A recent proposal is that preference construction can teelgelassified into two parts Systems 1 being generally
concerned with the more intuitive and automatic decisiokingg while Systems 2 being related to the more conscious
and considered decision making. Reviews of present stutliexonstrate that the mechanisms driving System 2
decision can take many forms, with the consumer being abéetively assess alternatives in numerous Wa&ys
Studies concerning the mechanisms underlying System kidesi seem somewhat more elusive. As systems 1
decisions are latent and automated in the mind, observatitrem can only be achieved through direct neurological
measurement rather than through more common self-reppsahological measurement and modefing

Previous research into functional measures of consumérpreees utilized the human brain activity, denoted as
Electroencephalogram (EEG), as a valuable tool to proviaieters with information not obtainable via conventional
marketing research methods (e.g., interviews, questicesjaand focus group%) The change in the human brain
signal and its main spectral bands of Delta (0-4 Hz), Theta k&), Alpha (8-12 Hz), Beta (13-30 Hz), and Gamma
(30-40 Hz) has been observed to examine consumers’ cogumiti&fective processes in response to prefabricated
marketing stimulf1911.12.13 A number of insights also suggested that the Event-ReRétential (ERP) component
of EEG is likely to capture system 1 decision makifigP1¢ An ERP is in general a measurable change in electrical
activity across the scalp arising from a neurological pssdiat corresponds to a sensory, cognitive or behavioral
event’. There are numerous types of ERPs, each being characteiliaeg two dimensions: the polarity of the
change in electrical activity (positive or negative deflattfrom some stasis level) and the latency of the deflection
from when the event occurred. Each type of ERP has been asstevith a specific group of neurological processes
and are used to measure the activation of those procdésdes

Only a limited number of studies have collected both newmadjitive and emotion) data and preference data, as
this is a newly emerging field of research. Unlike most priorkafocusing on theféect of diferent advertisements on
human brain activity, this paper focuses on analyzing the ElRanges in a simple choice (decision) context, designed
to measure specific features (i.e., colors and patternd)eothoice options (background images) that individuals
like/dislike when choosing from ffierent choice sets each consisting of two images. Additigrthle work in this
paper is based on using portable brain computer interfacevkras the Emotiv EPOC, a high resolution, multi-
channel, system which has been designed for practicalndsapplications.

2. Methods
2.1. Experimental Design

The measurement in this research employed a Discrete CRajmeriment (DCE) to elicit choices while partici-
pants were attached to an EEG headset as shown in Fig.1. TBeaBk&d participants to choose a new pattern for
their computer background from pairs presented to themgunesgce. This task of choosing a pattern for a background
was used as it would not require any economic reasoningionedtassessment, thus only system 1 would have been
activated. In this case, the lack of reasoning arises fraratisence of any price, purchase process, installation, or
other information. Only the background itself is availafide consideration, with each background being an amor-
phous pattern that will elicit some level of visual appeal aesthetic. This task does not preclude the activation of
system 2, as the two systems cannot be completely isolateddach other, but this task would most heavily draw on
system 1 processes.

The various computer background alternatives were degibgemanipulating pattern and color compositions.
Two pattern types of solid color and organic shapes were. uBee three colors of yellow, red and blue were used.
The patterns and colors were organized into backgrounahatiees using a full factorial that generated every pdssib
combination of pattern and color, thus forming six backgbalternatives. The background alternatives were then
organized into pairs using a permutation design. This p&timn design showed every possible pair wise combination
in every possible order. Thus the experiment comprised 8izek among pairs of backgrounds. One hundred and fifty
choice observations were drawn from five participants. Tamtigpants were students at a major Higher Education
Institution (ethical approval was acquired from the sansétiution). All participants were screened to be right heshd
and none needed to wear glasses during the experiment. Tputer on which participants completed the DCE task
recorded the screen at an average frame rate of 60 Hz. Thigeallthe decision times to be synchronized with the
EEG signals to an accuracy of 17 msec.
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Fig. 1. Photograph showing the experimental setup using tietiZ EPOC headset.

2.2. EEG Data Collection

The neurological data for the experiment was collected wWith Emotiv EPOC, a wireless multichannel EEG
system. It is comprised of 14 channels located at the posithd=3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4 according to the international 10-20 system. additional reference electrodes are located behind the
ears on the EPOC system. The 14 EEG channels were recordé@&tz sampling frequency. The headset utilizes
a proprietary USB dongle to communicate using the 2.4GHzbdior to use, all felt pads on top of the sensors
have to be moistened with a saline solution. The Emotiv Sam#bDevelopment Kit (SDK) provides a packet count
functionality to ensure no data is lost, a writable markacérto ease single trial segmentation tasks, and real-time
sensor contact display to ensure quality of measurentelits

2.3. EEG Signal Processing

One of the most important steps in EEG signal processingsssis to detect and remove artifacts caused by
muscle activity, eye blinks, and electrical noise. The gsialof the EEG signals started with a preprocessing step
to remove the baseline induced by the Dfset included in the EPOC EEG readings, as shown in Fig.2oWih
this step was a filtering step in which an IIR filter, Chebyshgpe-Il of minimum order (as designed by Matlab
automated filter parameter generation application) wéigedito band-pass filter the EEG signal to 0.5Hz - to- 40Hz.
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Fig. 2. Block diagram of the EEG processing system for ERBaien.
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The Gyroscope signals included in the EPOC were then uilipedetect and remove the movement sections by
observing their root mean square values, followed by a coatizin of Independent Component Analysis (ICA) and
Discrete Wavelet-Transform (DWT) based thresholding asritesd in Khushabat al.'°. This approach performs a
DWT-based denoising step on the yielded independent compmaad then projects the cleaned components back to
the original domain for ERP analysis. For more details atioeit CA-wavelet procedure, the reader is encouraged to
refer to'°.

3. Experimental Results

Prior to evaluating the relationships between the EEG aefépnce data, it is important to confirm that the choice
task elicited suitable preference data from participaméble. 1 presents the choice frequencies from the DCE, the
indicator for preference, for each of the background a#tewas, and for all subjects (S1 to S5). Choice frequencies
clearly vary across the alternatives indicating prefeeaamot uniform. There is also clear heterogeneity, sugugst
no dominant alternatives were present. Subjects were thagd express their personal preferences. Heterogeneity
in preference was highly desirable in this case, as it resiamy bias in the neurological measurement that may be
attributed to the presence of a dominant option in the erpest.

In terms of the ERP analysis, for each subject, there werestiamps that marked the beginning and end of the
period during which each of the 30 possible combination akgeound images was displayed. For each of these
periods, the EEG data that belongs to the first 1000 msec wialsubjects were eliciting their preferences on the
background images was segmented for later processing. Efedpochs that belong to the background images
containing the most preferred objects (color and pattenndlf subjects were then grouped together (averaged)ewhil
also grouping together the EEG epochs that belong to thegbawakd images containing the non-preferred objects.
When plotting the ERPs related to the most preferred objectsa all channels, and averaged across all subjects, a
significant positive potential around 300 msec, i.e., P3@monent, was revealed with a maximum value on F3 as
shown in Fig.3, using the EEGLAB toolbox availablesaicn.ucsd.edu/eeglab/. This component was elicited
when the subjects reacted to their preferred objects, amdstdistributed over the left frontal and right parietal and
temporal regions, a finding which is in agreement with presicesearctf->. However, unlike previous research,
our experiments required the subjects to indicate theahgtreferences on multiple objects and choose among
alternatives, while wearing a commercial EEG headset. Tbhegss of preference formation is depicted to activate
starting from the temporal, parietal, and occipital lobasy the first 50 msec while progressing to a strong P300
component on the frontal left F3 channel for preferred disjec

In order to validate these findings, we have utilized the Wetiwn student t-test to check the significarfteliences
between the ERPs associated with the preferred objectastdhat of the ERPs associated with the non-preferred
objects on each of the channels, on average across all &ibjElee t-test results indicated significanffeliences
between the ERPs of preferred vs. non-preferred objectdl of &7, F3, FC5, P7, O1, P8, T8, FC6, F8, and AF4
(with p < 0.01 for all tests, except P7 with < 0.02), while also revealing no significantffiirence between the
two sets of ERPs on AF3, T7, 02, and F4 wjgh> 0.05 for all tests. As the P300 component had its largest power
on F3 then we plotted the ERPs of preferred vs. non-prefasbgects on F3 as shown in Fig.4. This figure also
contains the N400 ERP of preferred vs.non-preferred abjinett had its smallest power on B7 € 0.02). These
plots clearly distinguishes the ERPs associated with tefepmed objects vs those associated with the non-preferred

Table 1. Preference data summary

Choice Frequencies
Background  Color Pattern S1 S2 S3 S4 S5
blue solid 2 6 2 1 4
yellow solid 0 4 4 5 2
red solid 4 4 0 8 0
blue shapes 8 10 9
yellow  shapes 6 0 9 7 10
red shapes 10 6 6
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Fig. 3. Average ERPs of most preferred objects across aléstshj

objects. The remaining channels that showed significafgrdinces between the ERPs of preferred vs. non-preferred
objects had a significant negative component around 100.midewever, the literature has identified such early
waves, or components peaking roughly within the first 100avegter stimulus as 'sensory’ or 'exogenous’ as they
depend largely on the physical parameters of the stinfélus contrast, ERPs generated in later parts, i.e., P300 and
N400, reflect the manner in which the subject evaluates thrukts and are termed 'cognitive’ or ‘endogenous’.

Finally, we have also observed a negative relationship éetvthe speed of the decision, and thEedence in pref-
erence for the objects in the decision. This findifiggis a practical evaluation of the validity of the experiméfihe
decision was harder because of decreases in prefereffieeedces between the backgrounds, then the choice should
have taken longer to make. On average, participants todksééonds to make a choice for each pair of backgrounds.
The correlation between the time taken to make the choicétenabsolute dierence in choice frequency is negative
and highly significantr(= -0.263,p < 0.01). This dfers a strong support for the findings of our study.

4. DISCUSSION AND CONCLUSIONS

The focus of this research was to examine the neurologicas lhar system 1 preference formation and decision
making. We used ERP potentials related to consumers’ gnedes elicitation to show, for the first time using Emotiv
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Fig. 4. Average ERPs across all subjects for most preferrednspreferred objects.
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EPOC, that dterential neural activity between preferred and non-preteitems exist mainly around 300 msec on F3
and 400 msec on P7. Based on the present research examieiRQB-ERP, we argued that, when measured mainly
on frontal channel F3, it captures the ability of the braia¢bas a dference engine. The P300 measures the systems
1 preference formation processes of examining the podséses of diference between objects and then identifying
the most diferent object. In this case, thefidgirence is based on the unique preferences of the persongrthliin
decision. Emotiv EPOC-based P300 may potentially be usethitketing research as an endogenous neural indicator
of measuring consumer’s preferences. The results of owergrpnt also demonstrate the amplitude of the N400 on
P7 is significantly related to theftirence in absolute preference, as measured through cheigeehcy, between the
various pairs of computer backgroundieoed. What this indicates, is that as thfetience in preference between the
alternative increases and the choice becomes more obt@usthe systems 1 neurological processes encompassed in
the N400 are activated to a much lesser extent as greatés tfygrocessing are simply not needed. The implications
of this research for research examining preference foomatie substantial. The decision task used in this research
was designed to activate systems 1 more-so than system &gmeé formation. This has allowed us to identify
the neurological features underlying systems 1. Futureareters can now more directly observe the impact of
experimental manipulations on the activation of such psees.
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